Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biocontrol by Fusarium oxysporum Using Endophyte-Mediated Resistance.

Identifieur interne : 000285 ( Main/Exploration ); précédent : 000284; suivant : 000286

Biocontrol by Fusarium oxysporum Using Endophyte-Mediated Resistance.

Auteurs : Francisco J. De Lamo [Pays-Bas] ; Frank L W. Takken [Pays-Bas]

Source :

RBID : pubmed:32117376

Abstract

Interactions between plants and the root-colonizing fungus Fusarium oxysporum (Fo) can be neutral, beneficial, or detrimental for the host. Fo is infamous for its ability to cause wilt, root-, and foot-rot in many plant species, including many agronomically important crops. However, Fo also has another face; as a root endophyte, it can reduce disease caused by vascular pathogens such as Verticillium dahliae and pathogenic Fo strains. Fo also confers protection to root pathogens like Pythium ultimum, but typically not to pathogens attacking above-ground tissues such as Botrytis cinerea or Phytophthora capsici. Endophytes confer biocontrol either directly by interacting with pathogens via mycoparasitism, antibiosis, or by competition for nutrients or root niches, or indirectly by inducing resistance mechanisms in the host. Fo endophytes such as Fo47 and CS-20 differ from Fo pathogens in their effector gene content, host colonization mechanism, location in the plant, and induced host-responses. Whereas endophytic strains trigger localized cell death in the root cortex, and transiently induce immune signaling and papilla formation, these responses are largely suppressed by pathogenic Fo strains. The ability of pathogenic strains to compromise immune signaling and cell death is likely attributable to their host-specific effector repertoire. The lower number of effector genes in endophytes as compared to pathogens provides a means to distinguish them from each other. Co-inoculation of a biocontrol-conferring Fo and a pathogenic Fo strain on tomato reduces disease, and although the pathogen still colonizes the xylem vessels this has surprisingly little effect on the xylem sap proteome composition. In this tripartite interaction the accumulation of just two PR proteins, NP24 (a PR-5) and a β-glucanase, was affected. The Fo-induced resistance response in tomato appears to be distinct from induced systemic resistance (ISR) or systemic acquired resistance (SAR), as the phytohormones jasmonate, ethylene, and salicylic acid are not required. In this review, we summarize our molecular understanding of Fo-induced resistance in a model and identify caveats in our knowledge.

DOI: 10.3389/fpls.2020.00037
PubMed: 32117376
PubMed Central: PMC7015898


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biocontrol by
<i>Fusarium oxysporum</i>
Using Endophyte-Mediated Resistance.</title>
<author>
<name sortKey="De Lamo, Francisco J" sort="De Lamo, Francisco J" uniqKey="De Lamo F" first="Francisco J" last="De Lamo">Francisco J. De Lamo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
</author>
<author>
<name sortKey="Takken, Frank L W" sort="Takken, Frank L W" uniqKey="Takken F" first="Frank L W" last="Takken">Frank L W. Takken</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32117376</idno>
<idno type="pmid">32117376</idno>
<idno type="doi">10.3389/fpls.2020.00037</idno>
<idno type="pmc">PMC7015898</idno>
<idno type="wicri:Area/Main/Corpus">000259</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000259</idno>
<idno type="wicri:Area/Main/Curation">000259</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000259</idno>
<idno type="wicri:Area/Main/Exploration">000259</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Biocontrol by
<i>Fusarium oxysporum</i>
Using Endophyte-Mediated Resistance.</title>
<author>
<name sortKey="De Lamo, Francisco J" sort="De Lamo, Francisco J" uniqKey="De Lamo F" first="Francisco J" last="De Lamo">Francisco J. De Lamo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
</author>
<author>
<name sortKey="Takken, Frank L W" sort="Takken, Frank L W" uniqKey="Takken F" first="Frank L W" last="Takken">Frank L W. Takken</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Interactions between plants and the root-colonizing fungus
<i>Fusarium oxysporum</i>
(Fo) can be neutral, beneficial, or detrimental for the host. Fo is infamous for its ability to cause wilt, root-, and foot-rot in many plant species, including many agronomically important crops. However, Fo also has another face; as a root endophyte, it can reduce disease caused by vascular pathogens such as
<i>Verticillium dahliae</i>
and pathogenic Fo strains. Fo also confers protection to root pathogens like
<i>Pythium ultimum</i>
, but typically not to pathogens attacking above-ground tissues such as
<i>Botrytis cinerea</i>
or
<i>Phytophthora capsici</i>
. Endophytes confer biocontrol either directly by interacting with pathogens
<i>via</i>
mycoparasitism, antibiosis, or by competition for nutrients or root niches, or indirectly by inducing resistance mechanisms in the host. Fo endophytes such as Fo47 and CS-20 differ from Fo pathogens in their effector gene content, host colonization mechanism, location in the plant, and induced host-responses. Whereas endophytic strains trigger localized cell death in the root cortex, and transiently induce immune signaling and papilla formation, these responses are largely suppressed by pathogenic Fo strains. The ability of pathogenic strains to compromise immune signaling and cell death is likely attributable to their host-specific effector repertoire. The lower number of effector genes in endophytes as compared to pathogens provides a means to distinguish them from each other. Co-inoculation of a biocontrol-conferring Fo and a pathogenic Fo strain on tomato reduces disease, and although the pathogen still colonizes the xylem vessels this has surprisingly little effect on the xylem sap proteome composition. In this tripartite interaction the accumulation of just two PR proteins, NP24 (a PR-5) and a β-glucanase, was affected. The Fo-induced resistance response in tomato appears to be distinct from induced systemic resistance (ISR) or systemic acquired resistance (SAR), as the phytohormones jasmonate, ethylene, and salicylic acid are not required. In this review, we summarize our molecular understanding of Fo-induced resistance in a model and identify caveats in our knowledge.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32117376</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Biocontrol by
<i>Fusarium oxysporum</i>
Using Endophyte-Mediated Resistance.</ArticleTitle>
<Pagination>
<MedlinePgn>37</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.00037</ELocationID>
<Abstract>
<AbstractText>Interactions between plants and the root-colonizing fungus
<i>Fusarium oxysporum</i>
(Fo) can be neutral, beneficial, or detrimental for the host. Fo is infamous for its ability to cause wilt, root-, and foot-rot in many plant species, including many agronomically important crops. However, Fo also has another face; as a root endophyte, it can reduce disease caused by vascular pathogens such as
<i>Verticillium dahliae</i>
and pathogenic Fo strains. Fo also confers protection to root pathogens like
<i>Pythium ultimum</i>
, but typically not to pathogens attacking above-ground tissues such as
<i>Botrytis cinerea</i>
or
<i>Phytophthora capsici</i>
. Endophytes confer biocontrol either directly by interacting with pathogens
<i>via</i>
mycoparasitism, antibiosis, or by competition for nutrients or root niches, or indirectly by inducing resistance mechanisms in the host. Fo endophytes such as Fo47 and CS-20 differ from Fo pathogens in their effector gene content, host colonization mechanism, location in the plant, and induced host-responses. Whereas endophytic strains trigger localized cell death in the root cortex, and transiently induce immune signaling and papilla formation, these responses are largely suppressed by pathogenic Fo strains. The ability of pathogenic strains to compromise immune signaling and cell death is likely attributable to their host-specific effector repertoire. The lower number of effector genes in endophytes as compared to pathogens provides a means to distinguish them from each other. Co-inoculation of a biocontrol-conferring Fo and a pathogenic Fo strain on tomato reduces disease, and although the pathogen still colonizes the xylem vessels this has surprisingly little effect on the xylem sap proteome composition. In this tripartite interaction the accumulation of just two PR proteins, NP24 (a PR-5) and a β-glucanase, was affected. The Fo-induced resistance response in tomato appears to be distinct from induced systemic resistance (ISR) or systemic acquired resistance (SAR), as the phytohormones jasmonate, ethylene, and salicylic acid are not required. In this review, we summarize our molecular understanding of Fo-induced resistance in a model and identify caveats in our knowledge.</AbstractText>
<CopyrightInformation>Copyright © 2020 de Lamo and Takken.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>de Lamo</LastName>
<ForeName>Francisco J</ForeName>
<Initials>FJ</Initials>
<AffiliationInfo>
<Affiliation>Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Takken</LastName>
<ForeName>Frank L W</ForeName>
<Initials>FLW</Initials>
<AffiliationInfo>
<Affiliation>Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Fusarium</Keyword>
<Keyword MajorTopicYN="N">PR protein</Keyword>
<Keyword MajorTopicYN="N">biocontrol</Keyword>
<Keyword MajorTopicYN="N">endophyte</Keyword>
<Keyword MajorTopicYN="N">induced resistance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32117376</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.00037</ArticleId>
<ArticleId IdType="pmc">PMC7015898</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Phytopathol. 2017 Aug 4;55:23-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28489498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Mar;89(6):1195-1209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27995670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 May;13(4):414-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22471698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2017 Dec 15;84(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29030446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2002 Sep;92(9):936-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2009 Nov;300(2):201-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19799634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2001 Aug;91(8):730-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Feb 09;7:117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26903995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Nov;216(3):897-914</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28857169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Aug;19(4):473-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10504569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2014 Dec;104(12):1329-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24983844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Aug;65(8):3335-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10427016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2017 Sep;18(7):1024-1035</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28390170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2019 Nov;5(11):1167-1176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31636399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Apr 18;8(4):e61332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23637814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2003 Jan-Feb;85(1-2):123-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12765782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Feb 16;7:170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26909099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:379-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jan 07;6:1207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26779237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2010 May;29(5):419-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20204373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(3):501-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Jun;10(6):1055-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9634592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Apr 11;484(7393):186-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22498624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jul;23(2):183-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10929112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2014 May;98(5):694</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30708524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):11086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16829581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2014;52:347-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24906124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2014 Jun;355(2):142-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24810367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Sep;69(9):5453-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12957934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2012 Nov;52(3):251-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22207456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Apr;27(4):336-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24313955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Nov 26;527(7579):521-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26503056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Jul 31;10:979</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31417594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Aug;68(8):4044-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):726-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21474434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2009 May;10(3):311-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Feb 01;7:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26870056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Mar 23;6(3):e17973</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21448276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jul;215(1):397-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28480965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Biotechnol. 2013 May;6(3):223-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23279965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 1997 May;81(5):492-496</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30861928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 May 09;4(5):e1000061</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18464895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Apr 24;54(2):263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24766890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Dec 21;16:1089</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26689712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Nov;184(3):529-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19761494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Jul;18(7):710-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16042017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2019 Jan 7;70(2):613-626</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30295911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Biotechnol. 2011 Jan;4(1):82-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21255375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Sep;236(3):765-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22767200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2010 Mar;11(2):309-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20447279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 1993;75(8):687-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8286442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2012 Dec;96(6):1455-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23108570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Aug 22;7(1):9042</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28831051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2019 Sep;4(9):1443-1449</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31133754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1493-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2011 Sep 15;168(14):1627-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21489652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Apr;8(4):521-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25744358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Mar;22(3):973-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20348432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1999 Nov;89(11):1073-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Feb;72(2):1523-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Dec;17(9):1455-1466</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27271322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Aug;26(8):918-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23617416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Feb 22;14:119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23432788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 May;22(5):507-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19348569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 May;188(10):3697-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16672623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 May 07;3:85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Apr 16;8(4):e61360</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23613839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Nov 04;6:967</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26583031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2008 Sep;286(2):152-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18657114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Sep;53(5):1373-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15387816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2015 Oct 09;16(10):23970-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26473835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1991 Jun;3(6):619-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1841721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2016 May;90:53-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26688467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18450-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17116870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jan;209(1):307-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26305378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2015 Dec;105(12):1512-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26057187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Aug;86(16):6201-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2762323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2016 Nov;18(11):4087-4102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27387256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19613-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Dec;224(4):1600-1612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31364172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2017 Aug 4;55:565-589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28645232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Jul;69(1):119-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18452583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Feb 17;6:21367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26883288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2004;42:185-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15283665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:839-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23373699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2010;48:21-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1999 Dec;89(12):1152-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Aug 20;329(5994):953-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20724636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2016 Mar 4;15(3):826-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26813582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 18;464(7287):367-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20237561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1991 Feb;3(2):137-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1840905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Dec 04;9:2977</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30564219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Jul;207(1):106-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25740416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2005 Dec;95(12):1391-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Nov 28;9:1692</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30546372</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
</country>
<region>
<li>Hollande-Septentrionale</li>
</region>
<settlement>
<li>Amsterdam</li>
</settlement>
<orgName>
<li>Université d'Amsterdam</li>
</orgName>
</list>
<tree>
<country name="Pays-Bas">
<region name="Hollande-Septentrionale">
<name sortKey="De Lamo, Francisco J" sort="De Lamo, Francisco J" uniqKey="De Lamo F" first="Francisco J" last="De Lamo">Francisco J. De Lamo</name>
</region>
<name sortKey="Takken, Frank L W" sort="Takken, Frank L W" uniqKey="Takken F" first="Frank L W" last="Takken">Frank L W. Takken</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000285 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000285 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32117376
   |texte=   Biocontrol by Fusarium oxysporum Using Endophyte-Mediated Resistance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32117376" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024